Effects of Alda-1, an Aldehyde Dehydrogenase-2 Agonist, on Hypoglycemic Neuronal Death
نویسندگان
چکیده
Hypoglycemic encephalopathy (HE) is caused by a lack of glucose availability to neuronal cells, and no neuroprotective drugs have been developed as yet. Studies on the pathogenesis of HE and the development of new neuroprotective drugs have been conducted using animal models such as the hypoglycemic coma model and non-coma hypoglycemia model. However, both models have inherent problems, and establishment of animal models that mimic clinical situations is desirable. In this study, we first developed a short-term hypoglycemic coma model in which rats could be maintained in an isoelectric electroencephalogram (EEG) state for 2 min and subsequent hyperglycemia without requiring anti-seizure drugs and an artificial ventilation. This condition caused the production of 4-hydroxy-2-nonenal (4-HNE), a cytotoxic aldehyde, in neurons of the hippocampus and cerebral cortex, and a marked increase in neuronal death as evaluated by Fluoro-Jade B (FJB) staining. We also investigated whether N-(1,3-benzodioxole-5-ylmethyl)-2,6-dichlorobenzamide (Alda-1), a small-molecule agonist of aldehyde dehydrogenase-2, could attenuate 4-HNE levels and reduce hypoglycemic neuronal death. After confirming that EEG recordings remained isoelectric for 2 min, Alda-1 (8.5 mg/kg) or vehicle (dimethyl sulfoxide; DMSO) was administered intravenously with glucose to maintain a blood glucose level of 250 to 270 mg/dL. Fewer 4-HNE and FJB-positive cells were observed in the cerebral cortex of Alda-1-treated rats than in DMSO-treated rats 24 h after glucose administration (P = 0.002 and P = 0.020). Thus, activation of the ALDH2 pathway could be a molecular target for HE treatment, and Alda-1 is a potentially neuroprotective agent that exerts a beneficial effect on neurons when intravenously administered simultaneously with glucose.
منابع مشابه
Pretreatment with the ALDH2 agonist Alda-1 reduces intestinal injury induced by ischaemia and reperfusion in mice
Many studies demonstrate that activation of aldehyde dehydrogenase 2 (ALDH2) protects against oxidative stress via detoxification of cytotoxic aldehydes, and could attenuate cardiac, cerebral, lung and renal ischaemia-reperfusion (I/R) injuries. However, the effect of ALDH2 in intestinal I/R is unknown. The present study was set up to determine whether an ALDH2 agonist, Alda-1, could alleviate ...
متن کاملThe Role of Mitochondrial Aldehyde Dehydrogenase 2 (ALDH2) in Neuropathology and Neurodegeneration.
Aldehydes-induced toxicity has been implicated in many neurodegenerative diseases. Exposure to reactive aldehydes from (1) alcohol and food metabolism; (2) environmental pollutants, including car, factory exhausts, smog, pesticides, herbicides; (3) metabolism of neurotransmitters, amino acids and (4) lipid peroxidation of biological membrane from excessive ROS, all contribute to 'aldehydic load...
متن کاملBioactivation of nitroglycerin by the East Asian variant of aldehyde dehydrogenase-2
Background The East Asian variant of mitochondrial aldehyde dehydrogenase (ALDH2) exhibits significantly reduced dehydrogenase, esterase and nitroglycerin (GTN) reductase activities [1]. The small molecule Alda-1 was reported to partly restore low acetaldehyde dehydrogenase activity of this variant [2]. In the present study we compared the wild-type enzyme (ALDH2*1) with the East Asian variant ...
متن کاملNeuroprotective effects of aldehyde dehydrogenase 2 activation in rotenone-induced cellular and animal models of parkinsonism
Many studies have shown that mitochondrial aldehyde dehydrogenase 2 (ALDH2) functions as a cellular protector against oxidative stress by detoxification of cytotoxic aldehydes. Within dopaminergic neurons, dopamine is metabolized by monoamine oxidase to yield 3,4-dihydroxyphenylacetaldehyde (DOPAL) then converts to a less toxic acid product by ALDH. The highly toxic and reactive DOPAL has been ...
متن کاملPKC-ALDH2 Pathway Plays a Novel Role in Adipocyte Differentiation
The ALDH2 gene encodes the mitochondrial aldehyde dehydrogenase 2 (ALDH2), a critical enzyme involved in ethanol clearance through acetaldehyde metabolism. ALDH2 also catalyzes the metabolism of other bioreactive aldehydes, including propionaldehyde, butyraldehyde, and 4-hydroxykenals (4-HNE). Increased levels of 4-HNE in adipose tissue positively correlate with obesity and insulin resistance. ...
متن کامل